
UNCLASSIFIED

AD295 705

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



THE UNIVERSITY
_ OF WISCONSIN

madisont Wisconsinl

MATH EMATICS IRESEARCH CENTER



MATHEMATICS RESEARCH CENTER, UNITED STATES ARMY

THE UNIVERSITY OF WISCONSIN

Contract No.: DA-11-022-ORD-2059

IDEMPOTENTS IN GROUP ALGEBRAS

Walter Rudin

MRC Technical Summary Report #361
November 1962

Madison, Wisconsin



ABSTRACT

It is known that the idempotent elements in the

complex group algebra of any commutative group have some

rather striking properties. The present note exhibits simple

examples of idempotents on non-commutative groups which

fail to have these properties.



IDEMPOTENTS IN GROUP ALGEBRAS

Walter Rudin

I. INTRODUCTION. If G is a group, its group algebra L I(G) consists of

all complex functions f on G for which the norm

(1) 11fl :1 = Y I f(x)
xe G

is finite; addition is pointwise, and multiplication is defined by convolution:

(Z) (f * g) (x Z f(y) g(y- x)
yEG

Any f E LI(G) for which

(3) f * f =f

will be called an idempotent on G

The support of a complex function f on G is the set of all x e G at

which f(x) 0 0 . The support group of f is the smallest subgroup of G

which contains the support of f .

By methods involving Fourier transforms and the Pontryagin duality theory,

the idempotents on abelian groups are completely known [2; p. 199J. (For non-

discrete locally compact abelian groups, the classification of the idempotent
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measures was completed by P. J. Cohen [1].) Let us draw attention to the

following facts, of which (A) and (D) are probably the most striking:

(A) If f is an idempotent on an abelian group G, then the support qroup of f

is finite.

(B) Idempotents on abelian groups are self -adioint (i. e., f(x - ) is the complex

conjugate of f(x)).

(C) On a finite abelian group there are only finitely many idempotents (namely

2n if the group has n elements). On a countable abelian group there are at

most countably many idempotents.

(D) If f is an idempotent on an abelian group and if lid~ > 1, then Rdl L q_5

[3; p. 72]. (Note that there are no idempotents f with ilfli < I, except

f=0 .)

It is the purpose of the present note to show. that each of the above

statements becomes false if the word "abelian" is omitted.

II. Consider a set E which contains the integers and the three symbols

a., let

()a 1 (c y)

b )()... -2 -1 01 2 ... }
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be permutations of E, and let G be the group generated by a and b

The relations

3 2k-i 2 Zk-i
(5) a =1, b a=a b

hold for all integers k, and G consists of the distinct elements

(6) an b k  (n=O, 1, 2; k=O, *1,2, ... ) .

Setting c = exp{2iri/3}, define

b I' =  n if k = 0,
(7) f 0 (ab){

00 if k 0 0

and

(8) f(x) = f 0(xb-) (x e G; j =0, *i, *, ... )

I claim that

(9) f0 *f = f  and f Zm-*l f = 0

for all integers j and m . Indeed,

(f0 fj)(an b ) f 0(anr f(ar b)

r=0

1 n-r r n j
9 w = f.(a ) ,

r=O
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whereas (5) shows that

a 2m- (an - r Zm - l f.(ar(f2m-1 b j) ( a n b f m-
r=O

1 2,
=9 X W = 0

r=O

00

If now cm are complex numbers such that Z Cm < oo, and if
-0

(10) f = f0 + YZ Cm f2 m-I
-00

then

00

(11) +Efll=1 Om <
-00

and the equations (9) show that f , f = f

Taking infinitely many cm 0 0, we thus obtain idempotents on G with

infinite support (and, a fortiori, with infinite support group). The example

f = f + f1 shows that there exist idempotents on G with finite support but

infinite support group. Equation (11) shows that every number > 1 is the

norm of some idempotent on G . Unless all c are 0, the idempotents
m

(10) are not self-ad joint.
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III. I have not succeeded in proving the existence of self-adjoint idempotents

with infinite support, but it is easy to give examples in which the support

group is infinite.

Put

a = (P-y) (12) (34) (56)

(12)

b = (a P ) (2 3) (45) (6 7)oo

Then ab has infinite order, so that the group G generated by a and b is
2 2 6 6 n I

infinite. The relations a = b , a =b = I hold. Define g a L

g1 = 0 elsewhere; g2 (b n ) = exp {---, g2  0 elsewhere. Then

(13) g 1 * g 1  g2? *g 2 = g,' g 1 g 2 
= g 2 * g 1 

= 0

Hence g = gI + g2 is an idempotent on G whose support S is finite. Since

a F S and b e S, G is the support group of g; and since g, and g2 are

self-adjoint, so is g .

IV. Even on a finite group there can be uncountably many idempotents, both

self-adjoint and non-self-adjoint. To see this, let G be the non-cyclic

group of order 6, with generators a and b . The relations a 3 = b2 =1

2
ba = a b hold. If p, q, r are complex numbers, subject to

2 2 1 2
(14) p + pq+ q = i--r
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and if

f (1) -- f (a) -- + i- , f (a ) --- " ,

(15)

f(b) = p+ q, f(ab) -p, f(a b) =-q,

explicit computation shows that f * f = f . If r is real and 12 r2 < 1

then p and q can be taken real in (14), and the resulting idempotents f are

self-adjoint. If r is not real, f is not self-adjoint.

V. We conclude with a positive result:

Theorem. If f is an idempotent on G and if Ilf II = 1, then the support of f

is a finite subgroup H of G, and

(16) f(xy) = IHI f(x) f(y) (x, y E H)

Here I HI denotes the number of elements of H . We sketch the proof.

Let S be the support of f , let m = max If(x)I (xE G), and let H be the

set of all x e G at which If(x)I = m . Clearly H is finite. For x e H, we

have

(17) Iz f(y) f(y-1 x)l = m
y

Since Hf I = 1, (17) is only possible if y 1 x e H for every y e SI i.e., if

S- 1 HC H . Since HCS, it follows that H is a group, and then that S - H
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Also, If(x)f = IHI - 1 on H . The equation f(x) = Ef(y) f(y-I x) then forces

the arguments of f(y) f(y-l x) to be equal to the argument of f(x), for all

x, y c H, and this gives (16)

Since non-negative idempotents have norm 1 or 0, the above theorem

characterizes them as well.

Finally, observe that (16) implies that f(xy) = f(yx) for all x,y c G

In other words, all idempotents of norm 1 lie in the center of the group algebra.

It would be interesting to know whether statement (A) of the Introduction is

true for all central idempotents.
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